

YO Refrigerant Monitor

User guide v1.2

Release notes

Released	Version	Key changes
05.09.2022	1.0	Initial release.
20.07.2023	1.1	Added configuration with Yosensi Management Platform for devices with firmware with 3.4.0 and newer. Changed description of connecting nodes with Yosensi Management Platform.
26.10.2023	1.2	Added configuration with Yosensi Mobile App

Content

Release notes	2
Content	3
Product description	4
Overview	4
Physical interfaces	5
LEDs	5
Buttons	5
Specifications	6
Physical	6
Operating conditions	7
Measured values	7
Pressure	7
Internal Temperature and relative internal humidity	9
Battery condition	10
Installation	11
Package contents	11
Safety precautions	11
Installation guide	12
Operation	16
IoT system components	16
Device configuration	17
Configurable parameters	17
Parameters description	19
Configuration node with Yosensi Management Platform	21
Configuration node with Yosensi mobile app	22
Connecting node with network	23
Yosensi Management Platform configuration	23
Adding a node manually	23
Adding node via Bluetooth	26
Payload description	27
Compliance statements	28

Product description

Overview

The YO Refrigerant Monitor is a device used to measure pressure in installations where pressure occurs. The device provides data on the pressure in the installation. Based on this information, it is possible to verify the correct functioning of the installation and prevent potential damage and loss of materials and products that this installation maintains.

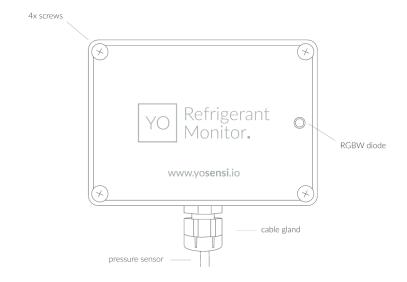


Figure 1 Device top view.

Device sticker placed on the right side of the device enclosure contains information about model, version, LoRaWAN region and 3 parameters important in case of device identification and configuration:

- **DEV EUI:** 64-bit unique device identifier in a LoRaWAN network,
- **DEV ADDR:** address required to connect via ABP activation type to LoRaWAN,
- **BLE MAC:** bluetooth physical address.

Figure 2 Device label.

Physical interfaces

LEDs

YO Refrigerant Monitor communicates its current behaviour to the user by RGBW LED placed on the top.

DIODE STATUES INTERPRETATION

BEHAVIOUR	COLOUR	DEVICE STATUS
Single flash	Green	General: device is working correctly (power and memory).
Single flash	Red	General: device is working incorrectly (power and memory). LoRaWAN communication: failed to receive an acknowledgement from LoRaWAN Server within specified timeout.
Single flash	White	LoRaWAN communication: LoRaWAN frame sent \ confirmation from LoRaWAN Server after receiving the frame.
Slow flashing	Blue	BLE communication: connection to the device via BLE (configuration).
Rapid flashing	Blue	LoRaWAN communication: connecting to LoRaWAN network.

Buttons

YO Refrigerant Monitor is equipped with one reset button inside the device on the PCB board next to the RGBW LED diode.

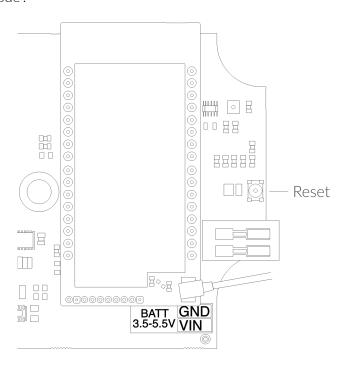


Figure 3 Reset button.

Specifications

Physical

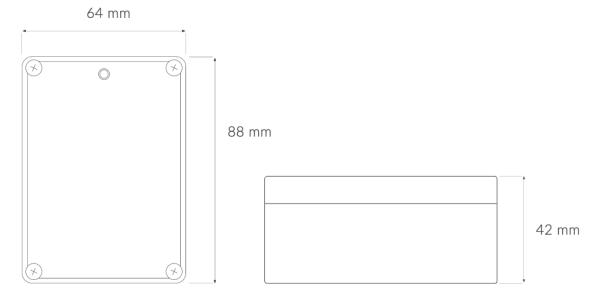


Figure 4 Dimensions of the device.

PHYSICAL SPECIFICATION

Dimensions	Height: 42 mm Width: 88 mm Depth: 64 mm
Colour	Light grey
Mounting method	Horizontal Vertical (can be screwed to the wall)
Enclosure material	ABS
Level of protection	IP67
Weight	326,5g

Operating conditions

OPERATING CONDITIONS

Temperature	0° to 70°C
Humidity	0 to 90%
Placement	Indoor use
Power supply	3 x LR6 (AA) battery (3 x 1,5 V)
Power consumption	Maximum 120 mA DC (4,5 V DC)
Input signal	Digital I2C

Measured values

MEASUREMENT RANGES

Parameter	Measuring range	Accuracy
Pressure	10, 20, 50, 100 bar	±1% (at temperatures from -20 °C to 85°C)
Temperature (internal)	-40°C to 125°C	±0,2°C (from 5°C to 60°C)
Relative humidity (internal)	0% to 100%	±2% (at 20% to 80%)
Temperature (sensor)	-20°C to 70°C	From 0,5% FS to 1% FS

Pressure

The device provides data on the pressure in the installation. Based on this information, it is possible to verify the correct functioning of the installation and prevent potential damage and loss of materials and products that this installation maintains. YO Refrigerant Monitor is able to work with different models of pressure sensors, please contact Yosensi if you are interested in implementing a different sensor than the recommended one.

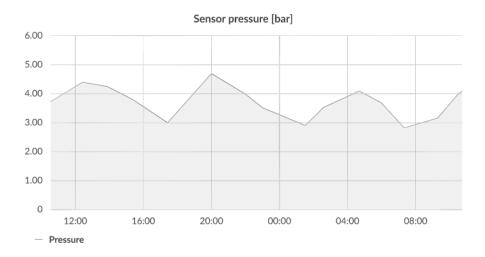


Figure 5 Sensor pressure monitoring chart.

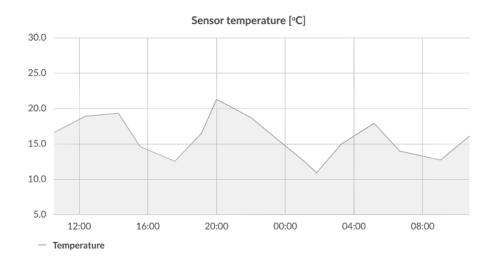


Figure 6 Sensor temperature monitoring chart.

Internal Temperature and relative internal humidity

Temperature and relative humidity are measured by sensors placed inside the device enclosure. These measurements can be used to monitor if the device is working in recommended conditions.

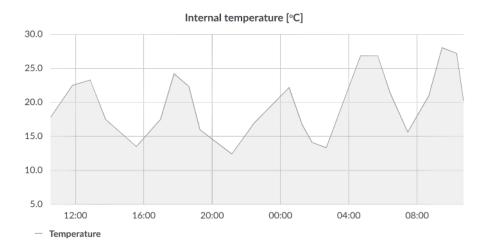


Figure 7 Internal temperature exemplary chart.

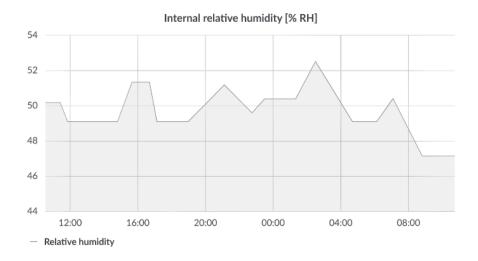


Figure 8 Internal humidity exemplary chart.

Battery condition

Battery voltage is used to monitor its condition – to spot anomalies (like sudden drop) or its current condition based on voltage drop over time in comparison to initial voltage rating.

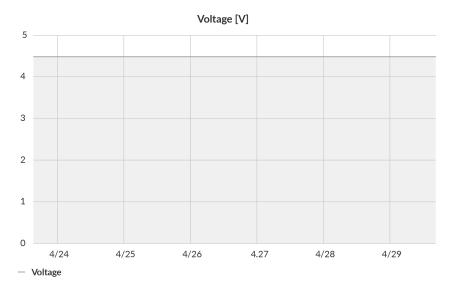


Figure 9 Battery voltage exemplary chart.

Installation

Package contents

- 1. Device (without batteries).
- 2. Warranty card.
- 3. Wrench (25 mm / 1").
- 4. 4-pin electrical connector.

Safety precautions

SAFETY PRECAUTIONS

SYMBOL

DESCRIPTION

Device is marked with a symbol saying that electrical and electronic products may not be mixed with unsorted household waste. Remember that batteries used to power the device must be treated at a specialized treatment facility.

Remember about possible electrostatic discharge when replacing battery, connecting input or doing some other operations near inside electronics.

Be careful while handling the device – dropping it may cause damage that will affect the sensors and other electronics inside.

When installing the device on the wall remember to wear adequate protective equipment.

To maintain the level of protection device cover screws must be properly tightened. Device shouldn't be used without cover.

Any actions inside the device's enclosure (excluding replacing batteries) must be performed by trained personnel only.

Clean the device only with damp cloth.

Device is intended for outdoor and indoor use. Make sure that device is not exposed for long term UV rays and in an environment in the immediate vicinity of water which may flood the device.

Installation guide

1. Unscrew the device: remove 4 screws from the enclosure.

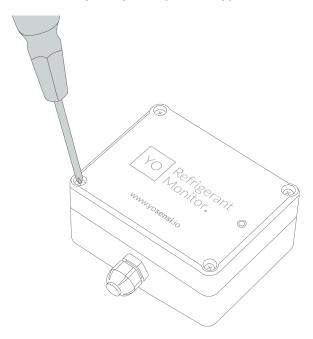


Figure 10 Device opening instructions.

2. Unscrew the cable gland nut and remove the cap.

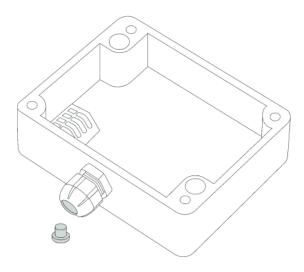


Figure 11 Device with removed top cover and PG7 cap marked.

3. Pass the pulse counting cable through the cable gland.

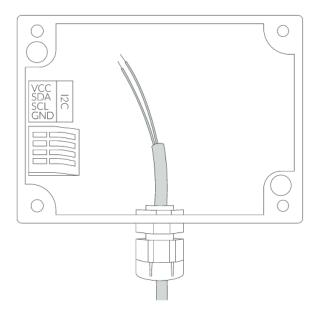


Figure 12 Input cable passing through the cable gland instructions.

4. Press the spring contact and insert the appropriate wire into the corresponding slot in the connector: VCC - brown wire

SDA - black wire

SCL - white wire

GND - blue wire

Tighten the cable gland to immobilize the external sensor wires and maintain tightness.

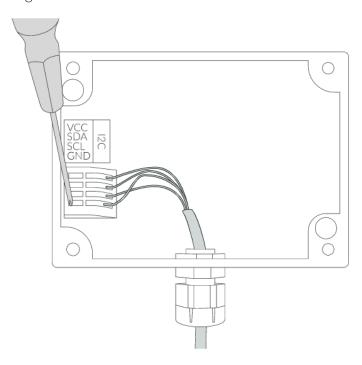


Figure 13 Connecting input cable instructions.

5. Screw the sensor into the installation with a wrench (25 mm / 1").

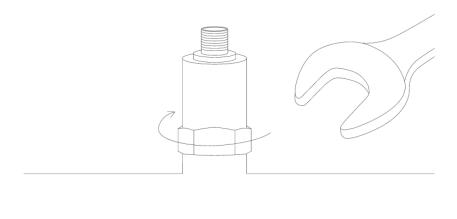


Figure 14 Connecting sensor instructions.

6. Plug and screw the 4-pin electrical connector into the sensor.

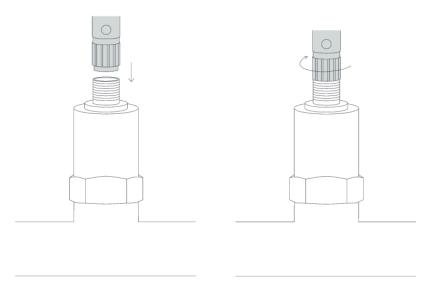


Figure 15 Connecting sensor instructions.

7. Place three LR6 batteries in the device according to the polarity indicated on the battery holder

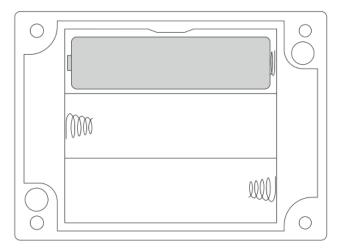


Figure 16 Battery placement instructions.

8. Assemble the device and screw it back together.

Operation

IoT system components

Typical IoT systems consist of 3 main elements (*Figure 16*), brief described below. In order to set communication, each element must be properly configured.

- 1. **Node** device with sensors and a wireless communication module that gathers data, forms the payload and sends it to the gateway.
- 2. **Gateway** device similar to routers, equipped with a LoRa concentrator, that receives LoRa packets and send them to the Internet-connected server.
- 3. **Server** in most cases, a cloud-based service where data is processed, stored, analysed, and presented in user-friendly ways (via a user interface); Yosensi default and recommended tools are Yosensi Management Platform (for IoT structure management) and Grafana (for data presentation).

Figure 17 IoT system components.

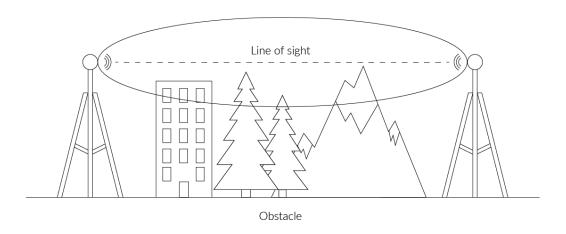


Figure 18 Fresnel zone where communication between two antennas can occur.

Device configuration

Configurable parameters

A few parameters must be set before sending data to the gateway. The default firmware is configured in OTAA mode with predefined *deveui*, *appkey* (OTAA) and *appskey*, *nwkskey* (ABP).

Configuration of the device is stored in a JSON file divided into the following sections:

- **info** (generic, read only): information about the device,
- **lorawan** (generic): configuration data for LoRaWAN connection,
- **ble** (generic): bluetooth settings,
- **device** (dynamic): individual configuration for a specific device (this section's structure differs for each device),

Sample configuration file for the YO Refrigerant Monitor device.

```
{
        "info": {
                 "devmodel": "LNFM",
                 "fwver": "3.6.1",
                 "loraradio": "SX1261",
                 "lorawanver": "1.0.2",
                 "loraregion": "EU868",
                 "blemacaddr": "0123456789ab"
        "lorawan": {
                 "subband": 1,
                 "nwktype": "public",
                 "acttype": "otaa",
                 "otaa": {
                         "deveui": "0123456789abcdef",
                         "appeui": "fedcba9876543210",
                         "appkey": "000102030405060708090a0b0c0d0e0f",
                         "trials": 3
                 "abp": {
                         "devaddr": "01234567",
                         "nwkskey": "0123456789abcdef0123456789abcdef",
                         "appskey": "000102030405060708090a0b0c0d0e0f"
                 }
        "ble": {
                 "power": 0,
                 "interval": 1600
        "device": {
                 "measinterval": 600,
                 "pressurerange": 50
}
```

GENERICS PARAMETERS

SECTION	NAME	DESCRIPTION	POSSIBLE VALUES	DEFAULT VALUE	READ/ WRITE
	devmodel	Device name	-	LNFM	R
	fwver	Firmware version	-	3.6.1	R
• •	loraradio	Radio chipset model	-	SX1261 ¹	R
info	lorawanver	LoRaWAN stack version	-	1.0.2	R
	loraregion	LoRaWAN region	-	EU868 ¹	R
	blemacaddr	Bluetooth LE address	-	predefined	R
	subband	Uplink subband number	Table ²	predefined	R/W
lorawan	nwktype	Network type	public, private	public	R/W
	acttype	Activation type	otaa, abp	otaa	R/W
	deveui	Device EUI (Extended Unique Identifier)	8 B (HEX)	predefined	R/W
lorawan	appeui	Application EUI	8 B (HEX)	predefined	R/W
-otaa	appkey	Application Key	16 B (HEX)	predefined	R/W
	trials	Join request trials	1-9	3	R/W
	devaddr	Device Address	4 B (HEX)	predefined	R/W
lorawan -abp	nwkskey	Network Session Key	16 B (HEX)	predefined	R/W
1	appskey	Application Session Key	16 B (HEX)	predefined	R/W
la la	power	Bluetooth LE transmit power [dBm]	04	0	R/W
ble	interval	Bluetooth LE advertising interval [ms]	MS_INPUT ³	1600	R/W

¹ LoRa radio chipset used defines the LoRaWAN region: SX1261 - EU868; SX1262 - AU915, US915, AS923

 $^{^2}$ Uplink subband list for specific LoRaWAN regions - UPLINK SUBBAND Table.

 $^{^3}$ Calculation formula: MS_INPUT = INTERVAL_MS × 1.6.

⁴Change currently not supported.

DEVICE PARAMETERS

NAME	DESCRIPTION	POSSIBLE VALUES	DEFAULT VALUE	READ/ WRITE
measinterval	Measuring and sending interval LoRa [s]	120-999999	1800	R/W
pressurerange	Range setting for each pressure sensor	10,20,50,100	50	R/W

Parameters description

- **nwktype:** used for setting the device in public or private network type.
- acttype: used for setting the device in ABP or OTAA mode.
- deveui, ..., appskey: predefined addresses and keys, these parameters are generated using
 multiple IDs specific to the particular MCU and are unique for each device.; they can be
 changed if needed.
- **interval:** determines the interval of sending broadcast packets, used to connect to every BLE receiver around the device.
- **subband:** used for setting the communication frequency sub-band in LoRaWAN.
- **measinterval:** measurement interval [s] between sending LoRa packets.
- **pressurerange**: depending on used sensor, returns measured value of the pressure in range from 0 to 10/20/50/100 bar

UPLINK SUBBAND

REGION	DESCRIPTION	POSSIBLE VALUES	DEFAULT VALUE	READ/ WRITE
EU868	Sub-band 1; 867.1 - 868.5 MHz; channels 0-7	1	1	R
	Sub-band 1; 902.3 - 903.7 MHz; channels 0-7	1		
	Sub-band 2; 903.9 - 905.3 MHz; channels 8-15	2		
	Sub-band 3; 905.5 - 906.9 MHz; channels 16-23	3		
	Sub-band 4; 907.1 - 908.5 MHz; channels 24-31	4	-	D 44/
US915	Sub-band 5; 908.7 - 910.1 MHz; channels 32-39	5	- 2	R/W
	Sub-band 6; 910.3 - 911.7 MHz; channels 40-47	6		
	Sub-band 7; 911.9 - 913.3 MHz; channels 48-55	7	_	
	Sub-band 8; 915.5 - 914.9 MHz; channels 56-63	8	_	
	Sub-band 1; 915.2 -916.6 MHz; channels 0-7	1	- - 2	
	Sub-band 2; 916.8 - 918.2 MHz; channels 8-15	2		
	Sub-band 3; 918.4 - 919.8 MHz; channels 16-23	3		
	Sub-band 4; 920.0 - 921.4 MHz; channels 24-31	4		
AU915	Sub-band 5; 921.6 - 923.0 MHz; channels 32-39	5		
	Sub-band 6; 923.2 - 924.6MHz; channels 40-47	6		
	Sub-band 7; 924.8 - 926.2 MHz; channels 48-55	7		
	Sub-band 8; 926.4 - 927.8 MHz; channels 56-63	8	_	
10000	Sub-band 1; 922.0 -923.2 MHz; channels 0-8	1		D. 11.1
AS923	Sub-band 2; 923.2 - 924.5 MHz; channels 9-17	2*	- 1	R/W

^{2*} change is not supported

Configuration node with Yosensi Management Platform

Connect to the device as follows:

- 1. Log in at app.yosensi.io
- 2. You'll see the dashboard organization view. Go to the Application section in the sidebar.
- 3. Select application, locate and select the device by looking for the DEV EUI on the device label.
- 4. Select the Firmware section. For the configuration of the device, you can see three different buttons:
 - Configure here, you can change and upload the device parameters.
 - Update firmware here, you can update the firmware to version 3.4.0 and newer.
 - Recover device this section restores the firmware of the device. This button helps if you lose the connection while uploading firmware.
- 5. Once the "Configure" button has been selected and the node has been paired with the computer, the next step is configuring parameters. You will see 2 different display options for the configuration. The first recommended is "Form-based-editor" and the second is "Text editor". Possible values with the description of each parameter can be found in the device configuration.

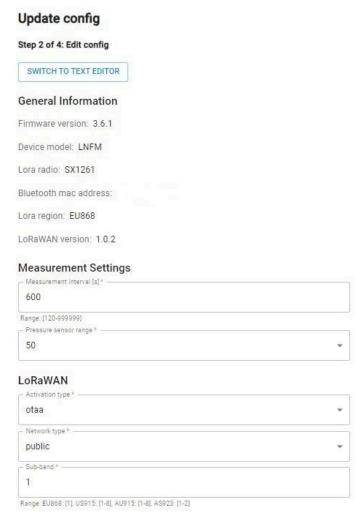


Figure 19 Update configuration section view.

6. Press the Upload button and wait

NOTE Additional information including device configuration can be found in <u>Yosensi</u> configuration web tool.

Configuration node with Yosensi mobile app

Connect to the device using Yosensi app as follows:

- 1. Login to Yosensi App using your credentials.
- 2. Go to the Devices section and choose the device you want to configure. If you can not see the device ensure that you are in the correct organization. Alternatively you can also scan the QR code placed on the node. It will redirect you right to the device details.
- 3. After selecting the device go to the "configuration" option in device details. Now wait, your mobile will pair with the node.
- 4. You will see 2 different display options of the configuration, first recommended is "Form-based-editor" second "Text editor". Possible values with description of each parameter can be found in the device configuration.

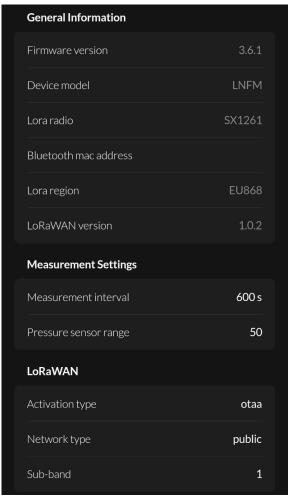


Figure 20 Configuration view in mobile app.

5. After changing parameters press 'save' button.

Connecting node with network

The LoRaWAN architecture requires a configured Gateway and Network Server. We'll go through an example in our recommended Yosensi Management Platform software.

Yosensi Management Platform configuration

Before you can make the node visible, you'll need an **organization** and an **application**. The organization is your own space, at the highest level of IoT systems management (like the root directory in operating systems). It can be created only by Yosensi staff, and all clients using Yosensi Management Platform have one created for them by default. In case of any questions, you can find us at support@yosensi.io. The application is a representation of each system and, together with the node definitions, is created by customers. The basic integration of a node into the Yosensi Management Platform is described below. Nodes can be added manually or via Bluetooth.

NOTE A subscription is needed to use Yosensi Management Platform. Contact us on contact@yosensi.io for more information and pricing.

Adding a node manually

Yosensi Management Platform integration instructions:

- 1. Log in to app.yosensi.io.
- 2. You'll see the default organization view. To switch to another organization, click on the user avatar in the right top corner and select 'Switch Organization'.
- 3. To create a new application, press the bottom right '+' button. Fill in the 'Name' and 'Description' fields and select an 'Application Profile', which is the region definition.

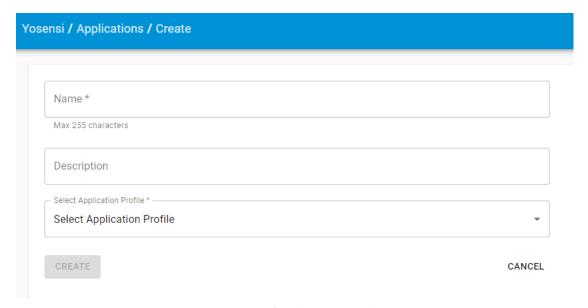


Figure 21 Application creation form.

4. Proceed to the application by clicking its name on the list, then press the '≡' button to add a node. Click 'Add manually'. Set the node's 'Name' and 'Description' fields, and fill in 'DEV EUI' and 'OTAA Key' (otaa section – appkey). All device identifiers are provided by Yosensi Support when you order the nodes.

Select a model that is compatible with your device — this choice affects the number of charts and data source (YO Refrigerant). You can also set the node's 'Location', if locations have been pre-defined. If you haven't defined a suitable location, leave this field set at <None>.

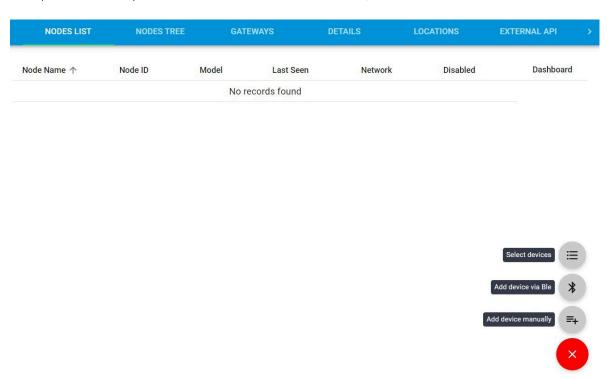


Figure 22 Adding node to the Yosensi Management Platform section view.

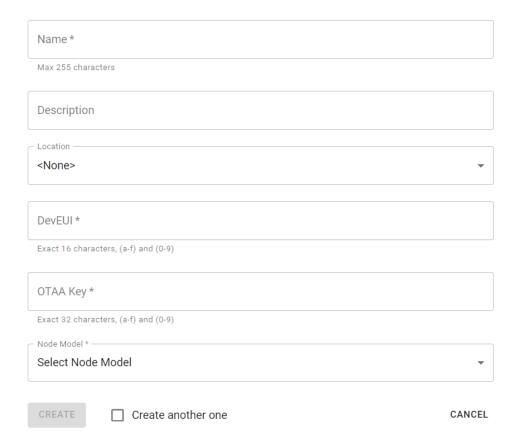


Figure 23 Node creation form.

5. **New nodes must be added in OTAA mode**. Nodes can be switched to ABP mode after activation in the Yosensi Management Platform by changing the Node configuration.

Click on the link in the 'Node Name' column. Go to the 'KEYS' tab and switch 'LoRa Type' from OTAA to ABP and fill in the blank spaces, then press update. The identifiers 'Device Address' (devaddr), 'Application Session Key' (appskey) and 'Network Session Key' (nwkskey) are provided by Support, or can be found in the device's configuration pane while connected to the node in the firmware section.

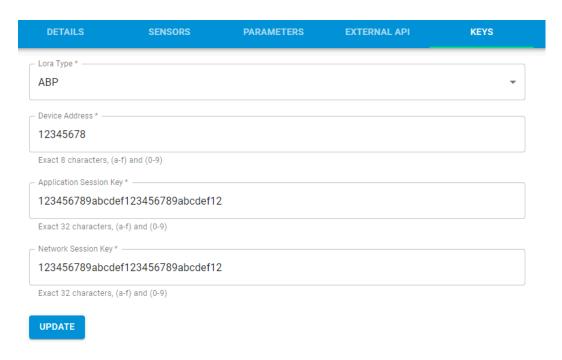


Figure 24 Node LoRa type configuration form.

- 6. When the server receives data from the device, you'll notice that the 'Last Seen' column ('NODES LIST' tab) status changes from 'never' to a few 'seconds ago'.
- 7. Open charts by clicking on the 'OPEN' button in Dashboard columns or by entering the node's 'DETAILS' tab ('Node Name' column link) and clicking 'CHARTS'.

Adding node via Bluetooth

- 1. Log in at app.yosensi.io.
- 2. You'll see the default organization view. To switch to another organization, click on the user avatar in the right top corner and select 'Switch Organization'.
- 3. To create an application, click the bottom right '+' button. Fill in the 'Name' and 'Description' fields and select the 'Application Profile', which is the region definition.
- 4. Proceed to the application by clicking its name on the list, and press the '≡" button to add a node. Click 'Add via Ble'. Select the device to add. Then, the list with devices available to connect to the application will appear. The name of the node will be generated automatically from the device model and DEV EUI, with OTAA key and DEV EUI filled in, press create.
- 5. When the server receives data, you'll notice that the 'Last Seen' column (NODES LIST' tab) status changes from 'never' to a few 'seconds ago'.
- 6. Open charts by clicking on the 'OPEN' button in Dashboard columns or by entering the node's 'DETAILS' tab ('Node Name' column link) and clicking 'CHARTS'.

Payload description

If you want to connect to your own server, it is necessary to decode the specific payload for each device. To accomplish this, a payload decoder is required, which can be downloaded using the following link: Payload decoder. Extended documentation of the protocol can be found in the Payload description on our website. An example payload produced by YO Refrigerant is presented below with divisions for each measurement and marked with decoded values, whose interpretation is described in the Payload description.

Example of YO Refrigerant Monitor payload with description:

02:00:00:00:08:00:01:11:a6:0d:00:01:01:07:10:00:00:33:16:00:11:6d:00:13:0d:00:11:6d:01:10

Payload header			Fi	rst measure	ment (battery v	oltage)		
0x02	0x00	0x00	0x00	0x08	0x00	0x01	0x11	0xA6
ver = 2	cnt = 0	pct [s] = O	type = 2 prec = 0	md [s] = 0	addr_len = 0 meas_len = 2	val = 4 (4518)	_

Second measurement (temperature)

0x0D	0x00	0x01	0x01	0x07
type = 3	md [s] = 0	addr_len = 0	val =	263
prec = 1		meas_len = 2	(26,3	[°C])

Third measurement (relative humidity)

0x10	0x00	0x00	0x33
type = 4	md [s] = 0	addr_len = 0	val = 51
prec = 0		meas_len = 1	(51[%])

Fourth measurement (pressure)

0x16	0x00	0x11	0x6D	0x00	0x13
type = 5 prec = 2	md [s] = 0	addr_len = 1, meas_len = 2	addr=109	(val=19 0,19 [bar])

Fifth measurement (temperature)

0x0D	0x00	0x11	0x6D	0x01	0x10
type = 3 prec = 1	md [s] = 0	addr_len = 1 meas_len = 2	addr=109	_	= 272 2[°C])

Compliance statements

UNITED KINGDOM CONFORMITY ASSESSED No. 05/2021/UKCA

with the European Directives: EMC 2014/30/UE; RED 2014/53/UE; RoHS 2011/65/UE

Yosensi Sp. z o.o. ul. Żurawia 71A, lok. 1.50, 15-540 Białystok

On our sole responsibility, we hereby declare that the product:

YO Refrigerant Monitor Name Voltage 4,5 V DC; current max 120mA; IP67 Technical data

to which this declaration of conformity applies is consistent with legal acts:

The Directive EMC Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the 2014/30/UE harmonisation of the laws of the Member States relating to electromagnetic compatibility (Official Journal of the European Union L 96/79 of 29.3.2014)

The Directive RED Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the 2014/53/UE harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC(Official Journal of the European Union L 153/62of

The Directive RoHS Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction 2011/65/EU and of the use of certain hazardous substances in electrical and electronic equipment (Official Journal of the European Union L 174/88 of 1.7.2011) and Commission Delegated Directive (EU) 2015/863 of 31 2015/863/EU March 2015 amending Annex II to Directive 2011/65/EU

Harmonized standards applied to the product to which this Declaration of Conformity relates:

BS EN 50401:2017 Product standard to demonstrate the compliance of base station equipment with radiofrequency

electromagnetic field exposure limits (110 MHz - 100 GHz), when put into service

BS EN IEC Electrical equipment for measurement, control and laboratory use -- EMC requirements 61326-1:2021 -- Part 1: General requirements (IEC 61326-1:2020)

BS EN IEC 61000-6-2: Electromagnetic compatibility (EMC) -- Part 6-2: Generic standards

BS EN IEC 61000-6-4: Electromagnetic compatibility (EMC) -- Part 6-4: Generic standards 2019 Emission standard for industrial environments (IEC 61000-6-4:2018)

ETSI EN 301 489-3 ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; V2.1.1:2019

Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

ETSI EN 300 220-2 V3.2.1:2018 Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz;

Part 2: Harmonised Standard for access to radio spectrum for non specific radio equipment

ETSI EN 300 328 Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band;

V2.2.2:2019 Harmonised Standard for access to radio spectrum

BS EN IEC 63000:2018 Technical documentation for the assessment of electrical and electronic products with respect to the

restriction of hazardous substances

The last two digits of the year in which the CE marking was affixed to the product: 21

Białystok, 2021-11-18

Founder/R&D Director Paweł Popławski

Name, surname and signature of the authorized person

YOSENSI.IO

EC DECLARATION OF CONFORMITY No. 05/2021/EN

with the European Directives: EMC 2014/30/UE; RED 2014/53/UE; RoHS 2011/65/UE

Yosensi Sp. z o.o. ul. Żurawia 71A, lok. 1.50, 15-540 Białystok

On our sole responsibility, we hereby declare that the product:

Name YO Refrigerant Monitor

Technical data Voltage 4,5 V DC; current max 120mA; IP67

to which this declaration of conformity applies is consistent with legal acts:

The Directive EMC Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the 2014/30/UE harmonisation of the laws of the Member States relating to electromagnetic compatibility (Official

Journal of the European Union L 96/79 of 29.3.2014)

The Directive RED Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the 2014/53/UE

harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC(Official Journal of the European Union L L153/62of

2015/863/EU

The Directive RoHS Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction 2011/65/EU and of the use of certain hazardous substances in electrical and electronic equipment (Official Journal of the

European Union L 174/88 of 1.7.2011) and Commission Delegated Directive (EU) 2015/863 of 31

March 2015 amending Annex II to Directive 2011/65/EU

Harmonized standards applied to the product to which this Declaration of Conformity relates:

EN 50401:2017 Product standard to demonstrate the compliance of base station equipment with radiofrequency electromagnetic field exposure limits (110 MHz - 100 GHz), when put into service

EN IEC 61326-1:2021 Electrical equipment for measurement, control and laboratory use -- EMC requirements

Part 1: General requirements (IEC 61326-1:2020)

Electromagnetic compatibility (EMC) -- Part 6-2: Generic standards EN IEC 61000-6-2: 2019

-- Immunity standard for industrial environments (IEC 61000-6-2:2016)

EN IEC 61000-6-4: Electromagnetic compatibility (EMC) -- Part 6-4: Generic standards

2019 -- Emission standard for industrial environments (IEC 61000-6-4:2018)

ETSI EN 301 489-3 ElectroMagnetic Compatibility (EMC) standard for radio equipment and services:

Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz V2.1.1:2019 and 246 GHz; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive

2014/53/EU

ETSI EN 300 220-2 Short Range Devices (SRD) operating in the frequency range 25 MHz to 1000 MHz;

V3.2.1:2018 Part 2: Harmonised Standard for access to radio spectrum for non specific radio equipment

ETSI EN 300 328 Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band;

V2.2.2:2019 Harmonised Standard for access to radio spectrum

EN IEC 63000:2018 Technical documentation for the assessment of electrical and electronic products with respect to the

restriction of hazardous substances

The last two digits of the year in which the CE marking was affixed to the product: 21

Białystok, 2021-11-18

Founder/R&D Director Paweł Popławski

YOSENSI.IO