# YO**SENSI.**IO

# **YO** Thermostat

User guide v1.0

# **Release notes**

| Released   | Version | Key changes      |
|------------|---------|------------------|
| 12.06.2024 | 1.0     | Initial release. |

# Content

| Release notes                                       | 2  |
|-----------------------------------------------------|----|
| Content                                             | 2  |
| Product description                                 | 4  |
| Overview                                            | 4  |
| Physical interfaces                                 | 5  |
| LEDs                                                | 5  |
| Buttons                                             | 6  |
| Specifications                                      | 7  |
| Physical                                            | 7  |
| Operating conditions                                | 8  |
| Measured values                                     | 8  |
| Temperature and relative humidity                   | 9  |
| Illuminance                                         | 10 |
| CO2 sensor                                          | 10 |
| Infrared occupancy sensor                           | 11 |
| Battery condition                                   | 11 |
| Thermostat output signal status                     | 12 |
| Installation                                        | 13 |
| Package contents                                    | 13 |
| Safety precautions                                  | 13 |
| Installation guide                                  | 14 |
| Operation                                           | 18 |
| IoT system components                               | 18 |
| Device configuration                                | 19 |
| Configurable parameters                             | 19 |
| Parameters description                              | 22 |
| Downlink message                                    | 24 |
| Update Comfort setpoint                             | 24 |
| Update Standby offset                               | 24 |
| Update Economy offset                               | 24 |
| Update Frost protection setpoint                    | 25 |
| Update Operation mode                               | 25 |
| Configuration node with Yosensi Management Platform | 27 |
| Configuration node with Yosensi mobile app          | 28 |
| Connecting node with network                        | 29 |
| Yosensi Management Platform configuration           | 29 |
| Adding a node manually                              | 29 |
| Adding node via Bluetooth                           | 32 |
| Payload decoder                                     | 33 |
| Compliance statements                               | 36 |

# **Product description**

### Overview

The YO Thermostat provides valuable insight into room conditions and enables precise temperature regulation based on the output signal from its PID controller. Designed to measure temperature, humidity, illuminance, and  $CO_2$  (optional) levels. It also has an infrared presence sensor, which is equipped with a built-in occupancy counter, enabling it to track the number of people presence in the room in real-time.

The device measures the room temperature using a built-in sensor and compares it to a desired setpoint. The PID controller continuously fine-tunes the state in response to the ambient temperature, ensuring consistent and precise temperature control. Based on the controller output signal an on or off state is passed via LoRaWAN. Device regulation states received via the LoRaWAN network should be used to control actuators. YO Thermostat **is not an actuator** - to control the heater, HVAC, etc. it requires a relay that will open/close the circuit, such as **YO Relay Switch**.

The YO Thermostat device is an ideal solution for assessing and maintaining optimal indoor environments, enhancing occupant comfort, productivity, and overall well-being. Additionally, it is a wireless battery-operated device.



Figure 1 Device top view.

Device sticker placed on the right side of the device enclosure contains information about model, version, LoRaWAN region and 3 parameters important in case of device identification and configuration:

- DEV EUI: 64-bit unique device identifier in a LoRaWAN network,
- **DEV ADDR:** address required to connect via ABP activation type to LoRaWAN
- BLE MAC: bluetooth physical address.



Figure 2 Device label.

### **Physical interfaces**

#### LEDs

YO Thermostat communicates its current behaviour to the user by RGBW LED placed next to the reset button. Figure 3 indicates its location.

| BEHAVIOUR      | COLOUR | DEVICE STATUS                                                                                                                                                                               |
|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single flash   | Green  | <b>General:</b> device is working correctly (power and memory). The device detected and counted a person nearby                                                                             |
| Single flash   | Red    | <b>General:</b> device is working incorrectly (power and memory).<br><b>LoRaWAN communication:</b> failed to receive an<br>acknowledgement from LoRaWAN Server within specified<br>timeout. |
| Single flash   | White  | <b>LoRaWAN communication:</b> LoRaWAN frame sent \ confirmation from LoRaWAN Server after receiving the frame.                                                                              |
| Slow flashing  | Blue   | <b>BLE communication:</b> connection to the device via BLE (configuration).                                                                                                                 |
| Rapid flashing | Blue   | LoRaWAN communication: connecting to LoRaWAN network.                                                                                                                                       |

#### DIODE STATUES INTERPRETATION

#### Buttons

YO Thermostat is equipped with a reset button inside the device. Figure number 3 indicates its location. To reset the device you need a thin stick to push the button.





# **Specifications**

## Physical



Figure 4 Dimensions of the device.

#### PHYSICAL SPECIFICATION

| Dimensions          | Height: 25.5 mm<br>Width: 86 mm<br>Depth: 86 mm     |
|---------------------|-----------------------------------------------------|
| Colour              | white                                               |
| Mounting method     | Horizontal<br>Vertical (can be screwed to the wall) |
| Enclosure material  | ABS                                                 |
| Level of protection | IP40, UL94-V0                                       |
| Weight              | 82,5 g                                              |

## **Operating conditions**

#### **OPERATING CONDITIONS**

| Temperature       | 0° to 70°C                       |
|-------------------|----------------------------------|
| Humidity          | 0 to 90%                         |
| Placement         | Indoor use                       |
| Power supply      | 3 x LR6 (AA) battery (3 x 1,5 V) |
| Power consumption | Maximum 120 mA DC (4,5 V DC)     |

### **Measured values**

#### MEASUREMENT RANGES

| Parameter                | Measurement range                             | Accuracy                                   |
|--------------------------|-----------------------------------------------|--------------------------------------------|
| Temperature              | -40° to 125°C                                 | ±0.2°C (5° to 60°C)                        |
| Relative humidity        | 0% to 100%                                    | ±2% (20% to 80%)                           |
|                          | 0 to 40 000 ppm                               |                                            |
| CO <sub>2</sub>          | Recommended working conditions: -10° to 60 °C | — ±(40 ppm+5%) from 400 ppm<br>to 5000 ppm |
| Illuminance              | 0 to 120 klx                                  | ±10% at 25°C                               |
| Infrared presence sensor | 0 to 4.5 metres,<br>80° field of view         |                                            |

#### Temperature and relative humidity

Temperature and relative humidity are measured by sensors placed inside the device enclosure, effectively monitoring the ambient conditions (see Recommended conditions).





Humidity



Figure 6 Internal humidity example chart.

#### Illuminance

The illuminance sensor measures the value of light intensity, which is used to determine if there is a proper amount of light in the room.



Figure 7 Example of illuminance monitoring chart.

#### CO<sub>2</sub> sensor

The  $CO_2$  level is a critical indoor environment parameter because it affects human health. For example, high levels within a short duration can reduce concentration and increase heart rate.



Figure 8 Example of  $CO_2$  monitoring chart.

#### Infrared occupancy sensor

Infrared motion sensor is equipped with a built-in occupancy counter, enabling it to count the passes of people to the room where the sensor is located.



Figure 9 Occupancy monitoring exemplary chart.

#### Battery condition

Battery voltage is used to monitor the device condition and spot anomalies (e.g., a sudden drop) or determine the current condition based on the voltage drop over time compared with the initial voltage rating.



Figure 10 Battery voltage exemplary chart.

#### Thermostat output signal status

The YO Thermostat features an on-off output signal controlled by a PID controller that continuously adjusts based on ambient temperature feedback. This integration allows for nuanced control, reducing overshooting, and providing a more stable and accurate response to environmental changes.



Figure 11 Thermostat output state status monitoring chart.





# Installation

### Package contents

- 1. Device (without batteries).
- 2. Warranty card.

### Safety precautions

#### SAFETY PRECAUTIONS

| SYMBOL   | DESCRIPTION                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Device is marked with a symbol saying that electrical and electronic<br>products may not be mixed with unsorted household waste. Remember<br>that batteries used to power the device must be treated at a specialized<br>treatment facility. |
|          | Remember about possible electrostatic discharge when replacing battery, connecting input or doing some other operations near inside electronics.                                                                                             |
|          | Be careful while handling the device – dropping it may cause damage that will affect the sensors and other electronics inside.                                                                                                               |
|          | When installing the device on the wall remember to wear adequate protective equipment.                                                                                                                                                       |
| <u>!</u> | To maintain the level of protection device cover screws must be properly tightened. Device shouldn't be used without cover.                                                                                                                  |
|          | Any actions inside the device's enclosure (excluding replacing batteries) must be performed by trained personnel only.                                                                                                                       |
|          | Clean the device only with damp cloth.                                                                                                                                                                                                       |
|          | Device is intended for indoor use. Make sure that device is not exposed for<br>long term UV rays and in an environment in the immediate vicinity of water<br>which may flood the device.                                                     |

### Installation guide

1. To open the enclosure, peel off the lower part, as shown in Figure 9.



Figure 13 Device opening instructions.

2. Place three LR6 batteries in the device according to the polarity indicated on the battery holder.



Figure 14 Device with placed batteries.

- 3. There are two ways to mount the device into a wall.
  - A. Install the bottom part of the enclosure and mount four screws in each corner to the wall.



Figure 15 Mounting the device using four screws.

B. Fit two mounting screws into the centre of the bottom case. Then, angle the bottom of the enclosure and turn it clockwise.



Figure 16 Mounting the device using two screws at an angle.



Figure 17 Mounting the device using two screws after a clockwise turn.

4. Place the upper part of the device enclosure on the bottom part mounted on a wall.



Figure 18 Placing device on the wall.

# Operation

### IoT system components

Typical IoT systems consist of 3 main elements (*Figure 18*), brief described below. In order to set communication, each element must be properly configured.

- 1. **Node** device with sensors and a wireless communication module that gathers data, forms the payload and sends it to the gateway.
- 2. **Gateway** device similar to routers, equipped with a LoRa concentrator, that receives LoRa packets and sends them to the Internet-connected server.
- 3. **Server** in most cases, a cloud-based service where data is processed, stored, analysed, and presented in user-friendly ways (via a user interface); Yosensi default and recommended tools are Yosensi Management Platform (for IoT structure management) and Grafana (for data presentation).



Figure 19 IoT system components.



Figure 20 Fresnel zone where communication between two antennas can occur.

### **Device configuration**

#### Configurable parameters

A few parameters must be set before sending data to the gateway. The default firmware is configured in OTAA mode with predefined *deveui*, *appkey* (OTAA) and *appskey*, *nwkskey* (ABP).

Configuration of the device is stored in a JSON file divided into the following sections:

- **info** (generic, read only): information about the device,
- lorawan (generic): configuration data for LoRaWAN connection,
- **ble** (generic): bluetooth settings,
- **device** (dynamic): individual configuration for a specific device (this section's structure differs for each device),

Sample configuration file for the YO Thermostat device.

```
{
    "info": {
        "devmodel": "LNTS",
        "fwver": "1.0.0",
        "loraradio": "SX1261",
        "lorawanver": "1.0.2",
        "loraregion": "EU868",
        "blemacaddr": "0123456789ab"
   },
"lorawan": {
        "subband": 1,
        "nwktype": "public",
        "acttype": "otaa",
        "otaa": {
            "deveui": "0123456789abcdef",
            "appeui": "fedcba9876543210",
"appkey": "000102030405060708090a0b0c0d0e0f",
             "trials": 3
        },
        "abp": {
            "devaddr": "01234567",
            "nwkskey": "0123456789abcdef0123456789abcdef",
             "appskey": "000102030405060708090a0b0c0d0e0f"
        }
    },
    "ble": {
        "power": 0,
        "interval": 1600
    },
    "device": {
        "measinterval": 3600,
        "co2calibval": 0,
        "tempoffset": 0,
        "illuminancecoeff": 1.6,
        "thermostat": {
            "comfortsetpoint": 21,
             "standbyoffset": -2,
             "economyoffset": -4,
             "frostprotsetpoint": 7,
             "oprmodeafterreset": 5,
             "cycletime": 900,
             "computinginterval": 60,
             "regkp": 5,
             "regki": 2,
             "regkd": 0.5
        }
   }
}
```

| SECTION         | NAME       | DESCRIPTION                                | POSSIBLE<br>VALUES    | DEFAULT<br>VALUE    | READ/<br>WRITE |
|-----------------|------------|--------------------------------------------|-----------------------|---------------------|----------------|
|                 | devmodel   | Device name                                | -                     | LNTS                | R              |
|                 | fwver      | Firmware version                           | _                     | 1.0.0               | R              |
| info            | loraradio  | Radio chipset model                        | -                     | SX1261 <sup>1</sup> | R              |
| info            | lorawanver | LoRaWAN stack version                      | _                     | 1.0.2               | R              |
|                 | loraregion | LoRaWAN region                             | -                     | EU868 <sup>1</sup>  | R              |
|                 | blemacaddr | Bluetooth LE address                       | _                     | predefined          | R              |
|                 | subband    | Uplink subband number                      | Table <sup>2</sup>    | predefined          | R/W            |
| lorawan         | nwktype    | Network type                               | public,<br>private    | public              | R/W            |
|                 | acttype    | Activation type                            | otaa, abp             | otaa                | R/W            |
|                 | deveui     | Device EUI (Extended<br>Unique Identifier) | 8 B (HEX)             | predefined          | R              |
| lorawan         | appeui     | Application EUI                            | 8 B (HEX)             | predefined          | R/W            |
| -otaa           | appkey     | Application Key                            | 16 B (HEX)            | predefined          | R/W            |
|                 | trials     | Join request trials                        | 1-9                   | 3                   | R/W            |
| lorawan<br>-abp | devaddr    | Device Address                             | 4 B (HEX)             | predefined          | R/W            |
|                 | nwkskey    | Network Session Key                        | 16 B (HEX)            | predefined          | R/W            |
|                 | appskey    | Application Session Key                    | 16 B (HEX)            | predefined          | R/W            |
| ble             | power      | Bluetooth LE transmit power<br>[dBm]       | O <sup>4</sup>        | 0                   | R/W            |
|                 | interval   | Bluetooth LE advertising interval [ms]     | MS_INPUT <sup>3</sup> | 1600                | R/W            |

<sup>1</sup> LoRa radio chipset used defines the LoRaWAN region: SX1261 - EU868; SX1262 - AU915, US915, AS923

 $^2$  Uplink subband list for specific LoRaWAN regions - UPLINK SUBBAND Table.

 $^{3}$  Calculation formula: MS\_INPUT = INTERVAL\_MS × 1.6.

<sup>4</sup>Change currently not supported.

| NAME               | DESCRIPTION                                       | POSSIBLE<br>VALUES | DEFAULT<br>VALUE | READ/<br>WRITE |
|--------------------|---------------------------------------------------|--------------------|------------------|----------------|
| measinterval       | Measuring and sending interval LoRa [s]           | 60*-999999         | 3600             | R/W            |
| co2calibval        | Calibration value of CO <sub>2</sub> sensor [ppm] | 0 - 9999           | 0                | R/W            |
| tempoffset         | Temperature offset in [°C]                        | -20.0 - 20.0       | 0                | R/W            |
| iluminancecoeff    | Illuminance coefficient                           | 0.0 - 10.0         | 1.6              | R/W            |
| comfortsetpoint    | Comfort set point                                 | 7.0 - 40.0         | 21.0             | R/W            |
| standbyoffset      | Standby offset                                    | -0.1 - (-8.0)      | -2.0             | R/W            |
| economyoffset      | Economy offset                                    | -0.1 - (-10.0)     | -4.0             | R/W            |
| frostprotsetpoint  | Frost protection set point                        | 7.0 - 40.0         | 7.0              | R/W            |
| opermodeafterreset | Operating mode after reset                        | 0, 1, 2, 3, 4, 5   | 5                | R/W            |
| cycletime          | Cycle time [s]                                    | 600 - 9999         | 900              | R/W            |
| computinginterval  | Computing interval                                | 1 - 300            | 60               | R/W            |
| regkp              | Regulator proportional gain                       | 1 - 8              | 5.0              | R/W            |
| regki              | Regulator integral gain                           | 0 - 6              | 2.0              | R/W            |
| regkd              | Regulator derivative gain                         | 0 - 4              | 0.5              | R/W            |

60\* - OTAA minimum 60 [s], ABP minimum 120 [s]

#### Parameters description

- *nwktype:* used for setting the device as a public or private network type.
- *acttype*: used for setting the device in ABP or OTAA mode.
- *deveui, ..., appskey:* predefined addresses and keys. These parameters are generated using multiple IDs specific to the particular MCU and are unique for each device. They can also be changed if needed.
- **interval:** determines the interval for sending broadcast packets, used to connect to every BLE receiver around the device.
- **subband:** used for setting the communication frequency sub-band in LoRaWAN.
- measinterval: interval for sending device sensors data LoRa payload.

- **co2calibval**: calibration value of the CO<sub>2</sub> sensor. This parameter provides high initial and long-term accuracy. It enables the sensor to immediately restore the highest accuracy with the assistance of a CO<sub>2</sub> reference value. This parameter is used if the measurement stability deviates. A value of 0 means that calibration is disabled.
- **tempoffset**: the offset value adjusted to the temperature measurement.
- **illuminancecoeff**: parameter that tunes the illumination intensity sensor to account for the attenuation of the light beam travelling through the optical fibre. This parameter is predefined.
- **comfortsetpoint**: comfort temperature set point is the target room temperature that a thermostat maintains for optimal comfort.
- standbyoffset: standby offset parameter. When standby operating mode is active this parameter determines how many degrees the comfort set point temperature will be shifted. In e.g. when comfort set point is 21.0 and "standbyoffset" is -2.0 the new comfort set point temperature will be 19.0.
- economyoffset: economy offset parameter. When economy mode is active this parameter determines how many degrees the comfort set point temperature will be shifted. In e.g. when comfort set point is 21.0 and "economyoffset" is -4.0 the new comfort set point temperature will be 17.0.
- **frostprotsetpoint**: frost protection set point. When protection mode is activated this parameter determines the temperature set point.
- **oprmodafterresset**: operating mode after reset. There are 6 modes, corresponding to 6 different room temperature control parameters to which different setpoints are assigned.
  - Value 0 disable thermostat feature.
  - Value 1 activates comfort mode.
  - Value 2 activates standby mode. This will set the room temperature thus saving heating or cooling energy in the process.
  - Value 3 activates economy mode. During the night hours or during a longer absence it is often best to adjust the room temperature to cooler temperatures for heating systems (e.g. in bedrooms). In this case cooling systems can be adjusted to higher temperature values, if climate control is not required (e.g. in offices). For this purpose the economy mode can be activated.
  - Value 4 activates protection mode. Used if the room temperature must not fall below critical values when the window is open or when temperature must not rise in a warm environment due to external influences.
  - Value 5 activates last before reset, mode that was activated before a reset will be readjusted after the initialization phase of the device.
- **cycletime**: cycle time between changing controller output state.

- **computinginterval**: computing interval of PID regulator. This parameter determines the predictive adjustment of the controller's output signal to prevent temperature overshoot (oscillation).
- **regkp**: Regulator proportional gain of relay switch. This value is predefined.
- **regki**: Regulator integral gain of relay switch. This value is predefined.
- **regkd**: Regulator derivative gain of relay switch. This value is predefined.

#### **Downlink message**

It is possible to change the measurement interval (*measinterval*) by using downlink. Information about changing parameter will be sent from server via gateway when Example of downlink message must include:

- Prefix: 0x03
- Measurement index: 0x06
- Data up to 4 bytes in hex

**0x03060258** - sample downlink with 600 seconds [10 min] measurement interval.

#### Update Comfort setpoint

It is possible to change Comfort setpoint temperature by using downlink. Example of downlink message include:

- Prefix: 0x03
- Measurement index: 0x07
- String data converted to hex:
  - Temperature range: 7.0 to 40.0

**0x030732312e30** - sample downlink to set Comfort setpoint temperature as 21.0 [°C]

#### Update Standby offset

It is possible to change Standby offset temperature by using downlink. Example of downlink message include:

- Prefix: 0x03
- Measurement index: 0x08
- String data converted to hex:
  - Temperature range: -7.0 to -0.1

**0x03082d322e30** - sample downlink to set Standby offset temperature as -2.0 [°C]

#### Update Economy offset

It is possible to change Economy offset temperature by using downlink. Example of downlink message include:

- Prefix: 0x03
- Measurement index: 0x09
- String data converted to hex:
  - Temperature range: -10.0 to -0.1

**0x03092d342e30** - sample downlink to set Standby offset temperature as -4.0 [°C]

#### Update Frost protection setpoint

It is possible to change Frost protection setpoint temperature by using downlink. Example of downlink message include:

- Prefix: 0x03
- Measurement index: 0x0a
- String data converted to hex:
  - Temperature range: 7.0 to 15.0

**0x030a372e30** - sample downlink to set Frost protection setpoint temperature as 7.0 [°C]

#### Update Operation mode

It is possible to change Operation mode by using downlink. Example of downlink message include:

- Prefix: 0x03
- Measurement index: 0x0b
- Operating modes data in hex:
  - Comfort: 0x01
  - Standby: 0x02
  - Economy: 0x03
  - Protect: 0x04
  - Disable: 0x05

**0x030b01** - sample downlink to set Comfort operation mode

#### UPLINK SUBBAND

| REGION | DESCRIPTION                                   | POSSIBLE<br>VALUES | default<br>Value | READ/<br>WRITE |
|--------|-----------------------------------------------|--------------------|------------------|----------------|
| EU868  | Sub-band 1; 867.1 - 868.5 MHz; channels 0-7   | 1                  | 1                | R              |
|        | Sub-band 1; 902.3 - 903.7 MHz; channels 0-7   | 1                  |                  |                |
|        | Sub-band 2; 903.9 - 905.3 MHz; channels 8-15  | 2                  | _                |                |
|        | Sub-band 3; 905.5 - 906.9 MHz; channels 16-23 | 3                  |                  |                |
|        | Sub-band 4; 907.1 - 908.5 MHz; channels 24-31 | 4                  |                  |                |
| US915  | Sub-band 5; 908.7 - 910.1 MHz; channels 32-39 | 5                  | - 2              | R/W            |
|        | Sub-band 6; 910.3 - 911.7 MHz; channels 40-47 | 6                  |                  |                |
|        | Sub-band 7; 911.9 - 913.3 MHz; channels 48-55 | 7                  |                  |                |
|        | Sub-band 8; 915.5 - 914.9 MHz; channels 56-63 | 8                  | _                |                |
| AU915  | Sub-band 1; 915.2 -916.6 MHz; channels 0-7    | 1                  |                  |                |
|        | Sub-band 2; 916.8 - 918.2 MHz; channels 8-15  | 2                  | _                |                |
|        | Sub-band 3; 918.4 - 919.8 MHz; channels 16-23 | 3                  |                  | R/W            |
|        | Sub-band 4; 920.0 - 921.4 MHz; channels 24-31 | 4                  | -                |                |
|        | Sub-band 5; 921.6 - 923.0 MHz; channels 32-39 | 5                  | - 2              |                |
|        | Sub-band 6; 923.2 - 924.6MHz; channels 40-47  | 6                  | _                |                |
|        | Sub-band 7; 924.8 - 926.2 MHz; channels 48-55 | 7                  | _                |                |
|        | Sub-band 8; 926.4 - 927.8 MHz; channels 56-63 | 8                  | -                |                |
| 4.6000 | Sub-band 1; 922.0 -923.2 MHz; channels 0-8    | 1                  | 4                |                |
| AS923  | Sub-band 2; 923.2 - 924.5 MHz; channels 9-17  | 2*                 | - 1              | R/W            |

2\* change is not supported

### **Configuration node with Yosensi Management Platform**

Connect to the device as follows

- 1. Log in at <u>app.yosensi.io</u>
- 2. You'll see the dashboard organization view. Go to the Application section in the sidebar.
- 3. Select application, locate and select the device by looking for the DEV EUI on the device label.
- 4. Select the Firmware section. For the configuration of the device, you can see three different buttons:
  - Configure here, you can change and upload the device parameters.
  - Update firmware here, you can update the firmware to version 1.0.0 and newer.
  - Recover device this section restores the firmware of the device. This button helps if you lose the connection while uploading firmware.
- 5. Once the "Configure" button has been selected and the node has been paired with the computer, the next step is configuring parameters. You will see 2 different display options for the configuration. The first recommended is "Form-based-editor" and the second is "Text editor". Possible values with the description of each parameter can be found in the device configuration.

| Jpdate config                                     |
|---------------------------------------------------|
| tep 2 of 4: Edit config                           |
| SWITCH TO TEXT EDITOR                             |
| Seneral Information                               |
| irmware version: 3.6.2                            |
| evice model: LNTS                                 |
| ora radio: SX1261                                 |
| luetooth mac address: when an Michael             |
| ora region: EU868                                 |
| oRaWAN version: 1.0.0                             |
| Aeasurement Settings<br>Temperature offset [*C] * |
| Range: [-20.0-20.0]                               |
| hermostat Settings                                |
| Regulator derivative gain *                       |
| Range: [0.0-4.0]<br>Regulator integral gain *     |
| 2                                                 |
| Range: [0.0-6.0]                                  |
| Regulator proportional gain *                     |
| Range: [1.0-8.0]                                  |
| Cycle time [s] *                                  |



6. Press the upload button and wait.

# NOTE Additional information including device configuration can be found in <u>Yosensi</u> configuration web tool.

#### Configuration node with Yosensi mobile app

Connect to the device using Yosensi app as follows:

- 1. Login to Yosensi App using your credentials.
- 2. Go to the Devices section and choose the device you want to configure. If you can not see the device ensure that you are in the correct organization. Alternatively you can also scan the QR code placed on the node. It will redirect you right to the device details.
- 3. After selecting the device go to the "configuration" option in device details. Now wait, your mobile will pair with the node.
- 4. You will see 2 different display options of the configuration, first recommended is "Form-based-editor" second "Text editor". Possible values with description of each parameter can be found in the device configuration.

| K Edit Conf               | iguration SAVE |
|---------------------------|----------------|
| Form-based editor         | Text editor    |
| General Information       |                |
| Firmware version          | 1.0.0          |
| Device model              | LNTS           |
| Lora radio                | SX1261         |
| Bluetooth mac address     |                |
| Lora region               | EU868          |
| LoRaWAN version           | 1.0.0          |
| Measurement Settings      |                |
| Temperature offset        | 0.0 ℃          |
| CO2 calibration value     | 0 ppm          |
| Measurement interval      | 300 s          |
| Illuminance coefficient   | 3.5            |
| Thermostat Settings       |                |
| Regulator derivative gain | 0.5            |
| Regulator integral gain   | 2∩             |



5. After changing parameters, press the "Save" button.

#### **Connecting node with network**

The LoRaWAN architecture requires a configured Gateway and Network Server. We'll go through an example in our recommended Yosensi Management Platform software.

#### Yosensi Management Platform configuration

Before you can make the node visible, you'll need an **organization** and an **application**. The organization is your own space, at the highest level of IoT systems management (like the root directory in operating systems). It can be created only by Yosensi staff, and all clients using Yosensi Management Platform have one created for them by default. In case of any questions, you can find us at <u>support@yosensi.io</u>. The application is a representation of each system and, together with the node definitions, is created by customers. The basic integration of a node into the Yosensi Management Platform is described below. Nodes can be added manually or via Bluetooth.

# NOTE A subscription is needed to use Yosensi Management Platform. Contact us on <u>contact@yosensi.io</u> for more information and pricing.

#### Adding a node manually

Yosensi Management Platform integration instructions:

- 1. Log in to <u>app.yosensi.io</u>.
- 2. You'll see the default organization view. To switch to another organization, click on the user avatar in the right top corner and select 'Switch Organization'.
- 3. To create a new application, press the bottom right '+' button. Fill in the 'Name' and 'Description' fields and select an 'Application Profile', which is the region definition.

| 'osensi / A | Applications / Create |        |
|-------------|-----------------------|--------|
|             |                       |        |
| Name        | *                     |        |
| Max 255     | 5 characters          |        |
| Descri      | iption                |        |
| - Select A  | Application Profile * |        |
| Select      | t Application Profile | *      |
| CREAT       | ΓE                    | CANCEL |



Proceed to the application by clicking its name on the list, then press the '≡' button to add a node. Click 'Add manually'. Set the node's 'Name' and 'Description' fields, and fill in 'DEV EUI' and 'OTAA Key' (otaa section – *appkey*). All device identifiers are provided by Yosensi Support when you order the nodes.

Select a model that is compatible with your device — this choice affects the number of charts and data source. You can also set the node's 'Location', if locations have been pre-defined. If you haven't defined a suitable location, leave this field set at <None>.

| NODES LIST  | NODES TREE | GATEW   | AYS        | DETAILS | LOCATIONS | EXTERNAL API        | ×  |
|-------------|------------|---------|------------|---------|-----------|---------------------|----|
| Node Name 🛧 | Node ID    | Model   | Last Seen  | Network | Disabled  | Dashboa             | rd |
|             |            | No reco | ords found |         |           |                     |    |
|             |            |         |            |         |           |                     |    |
|             |            |         |            |         |           |                     |    |
|             |            |         |            |         |           |                     |    |
|             |            |         |            |         |           |                     |    |
|             |            |         |            |         |           |                     |    |
|             |            |         |            |         |           | Select devices      | ≣  |
|             |            |         |            |         |           |                     |    |
|             |            |         |            |         |           | Add device via Ble  | *  |
|             |            |         |            |         |           | Add device manually | ≡+ |
|             |            |         |            |         |           |                     | ×  |

Figure 24 Adding node to the Yosensi Management Platform section view.

| CREATE Create another one            | CANCEL |
|--------------------------------------|--------|
| Select Node Model                    | •      |
| – Node Model * –                     |        |
| Exact 32 characters, (a-f) and (0-9) |        |
| OTAA Key *                           |        |
| Exact 16 characters, (a-f) and (0-9) |        |
| DevEUI *                             |        |
|                                      |        |
| <none></none>                        | •      |
| Location                             |        |
| Description                          |        |
| Max 255 characters                   |        |
| Name *                               |        |



5. **New nodes must be added in OTAA mode**. Nodes can be switched to ABP mode after activation in the Yosensi Management Platform by changing the Node configuration.

Click on the link in the 'Node Name' column. Go to the 'KEYS' tab and switch 'LoRa Type' from OTAA to ABP and fill in the blank spaces, then press update. The identifiers 'Device Address' (*devaddr*), 'Application Session Key' (*appskey*) and 'Network Session Key' (*nwkskey*) are provided by Support, or can be found in the device's configuration pane while connected to the node in the firmware section.

| DETAILS                   | SENSORS           | PARAMETERS | EXTERNAL API | KEYS |
|---------------------------|-------------------|------------|--------------|------|
| - Lora Type *             |                   |            |              |      |
| ABP                       |                   |            |              | *    |
| Device Address *          |                   |            |              |      |
| 12345678                  |                   |            |              |      |
| Exact 8 characters, (a-f  | ) and (0-9)       |            |              |      |
| Application Session Key   | *                 |            |              |      |
| 123456789abcdef           | 123456789abcdef12 | 2          |              |      |
| Exact 32 characters, (a-  | -f) and (0-9)     |            |              |      |
| - Network Session Key * - |                   |            |              |      |
| 123456789abcdef           | 123456789abcdef12 | 2          |              |      |
| Exact 32 characters, (a-  | f) and (0-9)      |            |              |      |
|                           |                   |            |              |      |



- 6. When the server receives data from the device, you'll notice that the 'Last Seen' column ('NODES LIST' tab) status changes from 'never' to a few 'seconds ago'.
- 7. Open charts by clicking on the 'OPEN' button in Dashboard columns or by entering the node's 'DETAILS' tab ('Node Name' column link) and clicking 'CHARTS'

#### Adding node via Bluetooth

- 1. Log in at <u>app.yosensi.io</u>.
- 2. You'll see the default organization view. To switch to another organization, click on the user avatar in the right top corner and select 'Switch Organization'.
- 3. To create an application, click the bottom right '+' button. Fill in the 'Name' and 'Description' fields and select the 'Application Profile', which is the region definition.
- 4. Proceed to the application by clicking its name on the list, and press the '≡" button to add a node. Click 'Add via Ble'. Select the device to add. Then, the list with devices available to connect to the application will appear. The name of the node will be generated automatically from the device model and DEV EUI, with OTAA key and DEV EUI filled in, press create.
- 5. When the server receives data, you'll notice that the 'Last Seen' column (NODES LIST' tab) status changes from 'never' to a few 'seconds ago'.
- 6. Open charts by clicking on the 'OPEN' button in Dashboard columns or by entering the node's 'DETAILS' tab ('Node Name' column link) and clicking 'CHARTS'.

#### Payload decoder

If you want to connect to your own server, it is necessary to decode the specific payload for each device. To accomplish this, a payload decoder is required, which can be downloaded using the following link: <u>Payload decoder</u>. Extended documentation of the protocol can be found in the <u>Payload description</u> on our website. An example payload produced by YO Thermostat is presented below with divisions for each measurement and marked with decoded values, whose interpretation is described in the <u>Payload description</u>.

Example of YO Thermostat payload with description:

#### First frame (uplink) scheduled by "measinterval" parameter (3600 s default):

02:7d:00:00:08:00:01:10:80:0d:00:01:01:06:10:00:00:3b:6c:00:01:02:f3:1a:00:01:01:39

| P       | ayload heac | ler   |        | F                    | irst measure | ement (battery               | voltage)         |               |
|---------|-------------|-------|--------|----------------------|--------------|------------------------------|------------------|---------------|
| 0x02    | 0x7d        | 0x00  | 0x00   | 0x08                 | 0x00         | 0x01                         | 0x10             | 0x80          |
| ver = 2 | cnt = 125   | pct [ | s] = 0 | type = 2<br>prec = 0 | md [s] = 0   | addr_len = 0<br>meas_len = 2 | val = .<br>(4224 | 4224<br>[mV]) |

#### Second measurement (temperature)

| OxOd                 | 0x00       | 0x01                         | 0x01 | 0x06             |
|----------------------|------------|------------------------------|------|------------------|
| type = 3<br>prec = 1 | md [s] = 0 | addr_len = 0<br>meas_len = 2 |      | = 262<br>2 [°C]) |

#### Third measurement (relative humidity)

| 0x10     | 0x00       | 0x00         | 0x3b     |
|----------|------------|--------------|----------|
| type = 4 | md [s] = 0 | addr_len = 0 | val = 56 |
| prec = 0 |            | meas_len = 1 | (56 [%]) |

#### Fourth measurement (CO2 [ppm])

| Ох6с                  | 0x00       | 0x01                         | 0x02 | Oxf3            |
|-----------------------|------------|------------------------------|------|-----------------|
| type = 27<br>prec = 0 | md [s] = 0 | addr_len = 0<br>meas_len = 2 |      | = 755<br>[ppm]) |

#### Fifth measurement (Illuminance [klx])

| Ox1a                 | 0x00       | 0x01                         | 0x01 | 0x39              |
|----------------------|------------|------------------------------|------|-------------------|
| type = 6<br>prec = 2 | md [s] = 0 | addr_len = 0<br>meas_len = 2 |      | = 313<br>3 [klx]) |

| 0x60                  | 0x00       | 0x01                         | 0x00 | 0x02             |
|-----------------------|------------|------------------------------|------|------------------|
| type = 24<br>prec = 0 | md [s] = 0 | addr_len = 0<br>meas_len = 2 |      | al = 2<br>[cnt]) |

#### Sixth measurement (Occupancy [cnt])

#### Second frame (uplink) scheduled by "cycletime" parameter (1800 s default):

02:7e:00:00:fd:00:11:07:00:d2:fd:00:11:08:ff:ec:fd:00:11:09:ff:d8:fd:00:11:0a:00:46:fc:00:10:0b:0 1:fd:00:11:0c:00:d2:fc:00:10:0d:00

#### Payload header

| 0x02    | 0x7e      | 0x00  | 0x00  |
|---------|-----------|-------|-------|
| ver = 2 | cnt = 126 | pct[s | ] = 0 |

#### First measurement (Thermostat Comfort setpoint)

| Oxfd                  | 0x00       | 0x11                         | 0x07     | 0x00 | Oxd2             |
|-----------------------|------------|------------------------------|----------|------|------------------|
| type = 63<br>prec = 1 | md [s] = 0 | addr_len = 1<br>meas_len = 2 | addr = 7 |      | = 210<br>) [°C]) |

#### Second measurement (Thermostat Standby offset)

| Oxfd                  | 0x00       | 0x11                         | 0x08     | Oxff | Oxec         |
|-----------------------|------------|------------------------------|----------|------|--------------|
| type = 63<br>prec = 1 | md [s] = 0 | addr_len = 1<br>meas_len = 2 | addr = 8 |      | 210<br>[°C]) |

#### Third measurement (Thermostat Economy offset)

| Oxfd                  | 0x00       | 0x11                         | 0x09     | Oxff | 0xd8           |
|-----------------------|------------|------------------------------|----------|------|----------------|
| type = 63<br>prec = 1 | md [s] = 0 | addr_len = 1<br>meas_len = 2 | addr = 9 |      | = -20<br>[°C]) |

#### Fourth measurement (Thermostat Frost protection setpoint)

| Oxfd                  | 0x00       | 0x11                         | ОхОа      | 0x00 | 0x46          |
|-----------------------|------------|------------------------------|-----------|------|---------------|
| type = 63<br>prec = 1 | md [s] = 0 | addr_len = 1<br>meas_len = 2 | addr = 10 |      | = 70<br>[°C]) |

|                       |            |                              |           | 8                         |
|-----------------------|------------|------------------------------|-----------|---------------------------|
| Oxfc                  | 0x00       | 0x10                         | OxOb      | 0x01                      |
| type = 63<br>prec = 0 | md [s] = 0 | addr_len = 1<br>meas_len = 1 | addr = 11 | val = 1<br>(Comfort mode) |

#### Fifth measurement (Thermostat Operating mode)

#### Sixth measurement (Thermostat Actual setpoint)

| Oxfd                  | 0x00       | 0x11                         | ОхОс      | 0x00 | 0xd2            |
|-----------------------|------------|------------------------------|-----------|------|-----------------|
| type = 63<br>prec = 1 | md [s] = 0 | addr_len = 1<br>meas_len = 2 | addr = 12 |      | = 210<br>)[°C]) |

#### Seventh measurement (Thermostat Output state)

| Oxfc                  | 0x00       | 0x10                         | OxOd      | 0x00                          |
|-----------------------|------------|------------------------------|-----------|-------------------------------|
| type = 63<br>prec = 0 | md [s] = 0 | addr_len = 1<br>meas_len = 1 | addr = 13 | val = 0<br>(Output state off) |

# **Compliance statements**

| E                                                   | EC DECLARATION OF CONFORMITY<br>No. 03/2024/EN                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| with the                                            | e European Directives: EMC 2014/30/UE; RED 2014/53/UE; RoHS 2011/65/UE                                                                                                                                                                                                                                                                                           |
| Yo                                                  | osensi Sp. z o.o., ul. Żurawia 71A, lok. 1.50, 15-540 Białystok                                                                                                                                                                                                                                                                                                  |
|                                                     | On our sole responsibility, we hereby declare that the product:                                                                                                                                                                                                                                                                                                  |
| Name<br>Technical data                              | YO Thermostat<br>Voltage 4,5 V DC; current max 120mA; IP40                                                                                                                                                                                                                                                                                                       |
|                                                     | to which this declaration of conformity applies is consistent with legal acts:                                                                                                                                                                                                                                                                                   |
| The Directive EMC<br>2014/30/UE                     | Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (Official Journal of the European Union L 96/79 of 29.3.2014)                                                                                                             |
| The Directive RED<br>2014/53/UE                     | Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC(Official Journal of the European Union L 153/62 of 22.5.2014)                                                      |
| The Directive RoHS<br>2011/65/EU and<br>2015/863/EU | Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (Official Journal of the European Union L 174/88 of 1.7.2011) and Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU |
| Harmon                                              | ised standards applied to the product to which this Declaration of Conformity relates:                                                                                                                                                                                                                                                                           |
| EN 50401:2017                                       | Product standard to demonstrate the compliance of base station equipment with radiofrequency<br>electromagnetic field exposure limits (110 MHz - 100 GHz), when put into service                                                                                                                                                                                 |
| EN IEC 61326-1:2021                                 | Electrical equipment for measurement, control and laboratory use EMC requirements<br>Part 1: General requirements (IEC 61326-1:2020)                                                                                                                                                                                                                             |
| N IEC 61000-6-1: 2019                               | Electromagnetic compatibility (EMC) Part 6-1: Generic standards<br>Immunity standard for residential, commercial and light-industrial environments (IEC 61000-6-1:2016                                                                                                                                                                                           |
| N IEC 61000-6-3: 2021                               | Electromagnetic compatibility (EMC) Part 6-3: Generic standards<br>Emission standard for equipment in residential environments (IEC 61000-6-3:2020)                                                                                                                                                                                                              |
| N IEC 61000-6-2: 2019                               | Electromagnetic compatibility (EMC) Part 6-2: Generic standards<br>Immunity standard for industrial environments (IEC 61000-6-2:2016)                                                                                                                                                                                                                            |
| N IEC 61000-6-4: 2019                               | Electromagnetic compatibility (EMC) Part 6-4: Generic standards<br>Emission standard for industrial environments (IEC 61000-6-4:2018)                                                                                                                                                                                                                            |
| ETSI EN 301 489-3<br>V2.1.1:2019                    |                                                                                                                                                                                                                                                                                                                                                                  |
| ETSI EN 300 220-2<br>V3.2.1:2018                    | Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz;<br>Part 2: Harmonised Standard for access to radio spectrum for non specific radio equipment                                                                                                                                                                                     |
| ETSI EN 300 328<br>V2.2.2:2019                      | Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonise Standard for access to radio spectrum                                                                                                                                                                                                                        |
| EN IEC 63000:2018                                   | Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances                                                                                                                                                                                                                         |
| The                                                 | e last two digits of the year in which the CE marking was affixed to the product: 24                                                                                                                                                                                                                                                                             |
|                                                     | Hounder/R&D Director<br>Paweł Popławski                                                                                                                                                                                                                                                                                                                          |
|                                                     | yk, 2024-06-12                                                                                                                                                                                                                                                                                                                                                   |
| Place a                                             | nd date of issue Name, surname and signature of the authorized person                                                                                                                                                                                                                                                                                            |

| CE '                                                   | UNITED KINGDOM CONFORMITY ASSESSED                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | No. 03/2024/UKCA                                                                                                                                                                                                                                                                                                                                                 |
| wit                                                    | h the European Directives: EMC 2014/30/UE; RED 2014/53/UE; RoHS 2011/65/UE                                                                                                                                                                                                                                                                                       |
|                                                        | Yosensi Sp. z o.o., ul. Żurawia 71A, lok. 1.50, 15-540 Białystok                                                                                                                                                                                                                                                                                                 |
|                                                        | On our sole responsibility, we hereby declare that the product:                                                                                                                                                                                                                                                                                                  |
| Name<br>Technical data                                 | YO Thermostat<br>Voltage 4,5 V DC; current max 120mA; IP40                                                                                                                                                                                                                                                                                                       |
|                                                        | to which this declaration of conformity applies is consistent with legal acts:                                                                                                                                                                                                                                                                                   |
| The Directive EMC<br>2014/30/UE                        | Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (Official Journal of the European Union L 96/79 of 29.3.2014)                                                                                                             |
| The Directive RED<br>2014/53/UE                        | Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the<br>laws of the Member States relating to the making available on the market of radio equipment and repealing Directive<br>1999/5/EC(Official Journal of the European Union L 153/62 of 22.5.2014)                                                |
| 2011/65/EU and                                         | Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (Official Journal of the European Union L 174/88 of 1.7.2011) and Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU |
| На                                                     | rmonised standards applied to the product to which this Declaration of Conformity relates:                                                                                                                                                                                                                                                                       |
| BS EN 50401:2017                                       | Product standard to demonstrate the compliance of base station equipment with radiofrequency electromagnetic field<br>exposure limits (110 MHz - 100 GHz), when put into service                                                                                                                                                                                 |
| BS EN IEC 61326-1: 2021                                | Electrical equipment for measurement, control and laboratory use EMC requirements                                                                                                                                                                                                                                                                                |
| BS EN IEC 61000-6-1: 2019                              | Part 1: General requirements (IEC 61326-1:2020)<br>Electromagnetic compatibility (EMC) Part 6-1: Generic standards                                                                                                                                                                                                                                               |
| BS EN IEC 61000-6-3: 2021                              | Immunity standard for residential, commercial and light-industrial environments (IEC 61000-6-1:2016)                                                                                                                                                                                                                                                             |
| BS EN IEC 61000-6-2: 2019<br>BS EN IEC 61000-6-4: 2019 | Electromagnetic compatibility (EMC) Part 6-3: Generic standards<br>Emission standard for equipment in residential environments (IEC 61000-6-3:2020)                                                                                                                                                                                                              |
|                                                        | Electromagnetic compatibility (EMC) Part 6-2: Generic standards<br>Immunity standard for industrial environments (IEC 61000-6-2:2016)                                                                                                                                                                                                                            |
|                                                        | Electromagnetic compatibility (EMC) Part 6-4: Generic standards<br>Emission standard for industrial environments (IEC 61000-6-4:2018)                                                                                                                                                                                                                            |
| ETSI EN 301 489-3<br>V2.1.1:2019                       | ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for<br>Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; Harmonised Standard covering the<br>essential requirements of article 3.1(b) of Directive 2014/53/EU                                                             |
| ETSI EN 300 220-2<br>V3.2.1:2018                       | Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz;<br>Part 2: Harmonised Standard for access to radio spectrum for non specific radio equipment                                                                                                                                                                                     |
| ETSI EN 300 328<br>V2.2.2:2019                         | Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum                                                                                                                                                                                                                       |
| BS EN IEC 63000:2018                                   | Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances                                                                                                                                                                                                                         |
|                                                        | The last two digits of the year in which the CE marking was affixed to the product: 24                                                                                                                                                                                                                                                                           |
|                                                        | Founder/R&D Director<br>Paweł Popławski                                                                                                                                                                                                                                                                                                                          |
| Białyst                                                | ok, 2024-06-12                                                                                                                                                                                                                                                                                                                                                   |
| Place                                                  | and date of issue Name, surname and signature of the authorized person                                                                                                                                                                                                                                                                                           |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                  |